A compact tunable polarized X-ray source based on laser-plasma helical undulators

نویسندگان

  • J. Luo
  • M. Chen
  • M. Zeng
  • J. Vieira
  • L. L. Yu
  • S. M. Weng
  • L. O. Silva
  • D. A. Jaroszynski
  • Z. M. Sheng
  • J. Zhang
چکیده

Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 10(19) photons/s/mm(2)/mrad(2)/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of a seeded free-electron laser with helical undulators.

Seeded single pass free-electron lasers are promising coherent, short-duration, and intense light sources, from the visible to x rays. Operated with adjustable undulators, they are also a unique device for providing fully variable polarized radiation. We report here the first seeding of helical undulators with a variable polarized source. We demonstrate that the adjustment of the seed polarizat...

متن کامل

All-laser-driven Thomson X-ray sources

We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively n...

متن کامل

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at lOHz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the ...

متن کامل

Investigation of the polarization state of dual APPLE-II undulators

The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple dat...

متن کامل

Numerical Studies on Tunable Coherent Radiations with a Laser-plasma Accelerator*

Generation of tunable coherent radiation is numerically investigated via the two-dimensional particle-in-cell (2DPIC) code developed by UNIST [1] and SIMPLEX developed by Spring-8. The electron beams can be produced by the laser-driven wakefield acceleration technique. The electron beam energy can be easily adjusted between 450 MeV and 800 MeV with a tapered density plasma on the order of 1×10 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016